ChainerConverter¶
-
class
webdnn.frontend.chainer.
ChainerConverter
[source]¶ Converter for Chainer.
Currently, from
v1.23
tov4.0.0
is supported.-
convert
(inputs, outputs)[source]¶ Convert chainer computational graph into WebDNN IR.
Parameters: - inputs (list of chainer.Variable) – input chainer variables
- outputs (list of chainer.Variable) – output chainer variables
example
Convert pre-trained ResNet model
model = chainer.links.model.vision.resnet.ResNet50Layers() # Forward propagation with dummy input to build computational graph x = chainer.Variable(np.empty((1, 3, 224, 224), dtype=np.float32)) y = model(x, layers=["fc6"])["fc6"] graph = ChainerConverter().convert([x], [y])
Returns: WebDNN Graph Return type: ( Graph
)
-
convert_from_inout_vars
(inputs, output)[source]¶ Construct computational graph from input and output chainer variables, and convert the graph into WebDNN IR.
Parameters: - inputs (list of chainer.Variable) – input chainer variables
- outputs (list of chainer.Variable) – output chainer variables
Warning
This method will be removed in the future version. Use
convert(inputs, outputs)()
.Returns: WebDNN Graph Return type: ( Graph
)
-